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Abstract

The toroidal thermosyphon is widely used in solar water systems, nuclear reactors and geothermal energy systems, etc. The flow

stability has been the main research topic but little attention was paid to the influence of boundary conditions. An experiment was

performed on a copper torus. The Lorenz-like chaotic flow was not observed in clear contrast to that in the usual glass torus.

Numerical simulation showed that the axial heat conduction in the tube wall deformed the heat flux distribution. A one-dimensional

model generally formulated the boundary condition effects on the Hopf bifurcation. The model suggested that the metal wall could

efficiently eliminate temperature perturbation, decrease the driving force and hence stabilize the global flow. The model was also

used to analyze the effect of torus tilt angle on flow stability, whose conclusion agreed with previous experiment. � 2002 Elsevier

Science Inc. All rights reserved.
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1. Introduction

The natural convection in a toroidal loop has been
widely studied in the last several decades, because of its
applications in solar water systems, nuclear reactors and
geothermal energy systems, etc. Another driving force
for the wide studies has been its special situation in
nonlinear dynamics, that is, a typical pedagogical ex-
ample described by the Lorenz model. The liquid flow
along the loop, which is placed in a vertical plane, is
driven by buoyancy due to a negative vertical tempera-
ture gradient formed by heating from below and cooling
from above. In spite of the simplicity of the geometry,
the fluid motions and dynamic properties vary quite
complicatedly and hence have not been satisfactorily
formulated so far. Those researches pioneered by Keller

(1966), Welander (1967), and Malkus (1972) were re-
viewed by Greif (1988).

Creveling et al. (1975) observed firstly the Lorenz-like
chaotic flow (aperiodic flow with successive direction
alternation) in their experiment. The totus tube was
made of Pyrex glass. The bottom half was heated at
uniform heat flux while the upper half was cooled at
constant temperature (we refer to the boundary condi-
tions as BC–QT below). The works concerning the
physical mechanism include those of Malkus (1972),
Hart (1984), Sen et al. (1985), Gorman et al. (1986),
Yorke et al. (1987), Stern et al. (1988) and Widmann et
al. (1989), etc., who applied the Lorenz model and
modified it to consider various effects under the basic
assumption of one-dimensionality.

However, Suda and Mimura (1989), Ehrhard and
Muller (1990) and Sano (1991a) reported different ex-
periments. Although their loops were also made of Py-
rex glass the boundary conditions were different from
BC–QT. In Suda and Mimura (1989) and Ehrhard and
Muller (1990) the bottom half of the loops were heated
at constant temperature instead of uniform heat flux (we
refer to this as BC–TT). The Lorenz-like chaos was
obviously delayed. In Sano (1991a) only the upper and
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bottom quarters of the torus were cooled/heated at
constant temperatures. The Lorenz-like chaos did not
appear (Ra=Rac ¼ 298:9). They attributed the difference
of results to local three-dimensional flow disturbance,
which changed the overall friction losses and reduced
the buoyancy by leveling out temperature gradients.
Sano (1991a,b) proposed a three-dimensional model,
which successfully formulated the intermittence bifur-
cation to chaos.

In engineering practice thermosyphon systems are
made of metal materials due to the better processing
properties and higher thermal conductivity. We built a
torus to study the wall effects on natural convection.
Although its shape and boundary conditions were the
same as those in Creveling et al. (1975) the torus was
made of copper instead of glass. The Lorenz-like chaotic
flow never appeared. The discrepancies between the
above-mentioned experiments imply that the boundary
conditions and the tube wall material crucially affect the
flow behavior in the toroidal thermosyphon.

2. Experimental study

2.1. Experimental setup

The torus of the thermosyphon (see Fig. 1) was fab-
ricated from two 23 mm inner diameter pure copper

Nomenclature

Bi Biot mumber, hdi=kw
c fluid heat capacity, J/(kg �C)
d torus tube diameter, m
g gravity acceleration, m=s2

h heat transfer coefficient, W=ðm2 �CÞ
k heat conductivity, W=ðm2 �CÞ
K coefficient in Eq. (14)
Nu Nusselt number, hdi=kf
Pr Prandtl number
q heat flux, W=m2

r;u; h; ro; ri coordinates and variables defined in
Fig. 3

R main radius of the torus, m
Ra Rayleigh number
Re Reynolds number
t time, s
T temperature, �C
T3; T6; T9 bulk temperature of the fluid in the

places shown in Fig. 1, �C
w fluid velocity along the pipe, m/s

Greeks
a tilt angle of the torus
b thermal expansion coefficient, K�1

k eigenvalue of coefficient matrix
U superheat
l dynamic viscosity of fluid, kg=ðm sÞ
q density of the fluid, kg=m3

r 16Pr Nu�1

sw shear stress, kg=ðm s2Þ
Subscripts
b bulk flow
c cooling, reference value
E even mode
f fluid
h heating
i inner tube surface
in the entrance of heating section
o outer tube surface
O odd mode
out the entrance of heating section
q uniform heat flux boundary condition
T constant temperature wall boundary

condition
w tube wall

Fig. 1. Toroidal thermosyphon experimental setup.
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tube halves with a main radius of R ¼ 380 mm. The tube
thickness was 1.25 mm. Two sections of 62 mm long
Plexiglas with the same inner diameter connected the
copper sections for the visualization, the thermal ex-
pansion and the temperature measuring. The sections
introduced no considerable effects on the friction prop-
erty of the system.

The torus was cooled by means of a water jacket,
which surrounded the upper half portion. The water
jacket was made of copper tube section in 34 mm inner
diameter. The cooling tap water flew into the jacket at a
flow rate larger than 2 l=min, which kept the wall tem-
perature Tw always constant. The lower half was heated
with 5 SIL 10206 type linear heaters that were evenly
wound around the tube and were connected in parallel
with a RSD 10A transformer. The heaters’ resistances
were 47.98, 48.39, 48.03, 49.39, and 49.06 X from left to
right. The rated power of the transformer was 1300 VA.
The heated section was covered with multi-layers of fi-
berglass blanket approximately 13 mm thick. That in-
sulation method assured that heat loss was less than 1%
of the generated heat.

Temperatures were measured by T-type thermocou-
ples. A TR6841 digital recorder measured the heating
power. A TR7200 digital scanner scanned the measured
signals; while a YEW 3056 pen recorder plotted the fluid
temperatures T3, T6, T9 simultaneously. An SVX-
485DX2 PC controlled the scanner and accumulated the
measured data. A small amount of Polystyrene latex
micro particles was seeded in the fluid to visualize the
flow.

At each run the heating power increased directly from
zero to the specialized value. The symmetric of the
heating and cooling sections to the vertical axis was
examined. The flow could be clockwise or anti-clockwise
by chance. The measurement time was longer than 3 h,
which was long enough for recording all typical flow
behavior that may appear.

2.2. Results and discussion

The working fluid in the thermosyphon tube was
distilled water. Following the ideas of previous re-

searchers (Creveling et al., 1975; Gorman et al., 1986,
etc.), the time series of T9, T6 and T3 could tell the story
of the flow features. The oscillation of T3 � T9 repre-
sented the vibration of flow speed. Let Tin and Tout
represent the temperatures at the entrance and the exit
to the heating section. If T3 � T9 > 0, the flow was
counterclockwise, and Tin ¼ T9, Tout ¼ T3, else, the flow
was clockwise, and Tin ¼ T3, Tout ¼ T9. That relation was
verified by visual observation. Table 1 shows the ranges
of the following different flow motions reflected by
temperatures under heating powers of approximately
q ¼ 0:006–1:39 W=cm2 (5–1200 W).

2.2.1. Steady flow (see Fig. 2(1))
The liquid began flowing at the smallest heating

power (5 W). The flow was steady without undergoing
any oscillatory process when the heat flux was less than
0:012 W=cm2. With increase in the heating power, T9
and T3 underwent a short time of oscillation before be-
coming stable, which implied that the unbalances of the
temperature field increased. However, the temperature
in the bottom T6 had no oscillation at all until the heat
flux reached 0:023 W=cm2.

2.2.2. Periodically oscillatory flow (see Fig. 2(2))
At a heat flux of 0:023 W=cm2, Tout began to oscillate

periodically with constant amplitude at first. Tin and T6
showed also the oscillation at 0:052 W=cm2 and
0:087 W=cm2, respectively. In contrast, the oscillation
amplitudes of Tin and T6 were much smaller than that of
T9, which suggested the perturbations caused by heating
were large. T6 oscillated with one or two base frequen-
cies until the heating power was increased very large.
For instance, Fig. 2(2) shows the power spectrum of
T3 � T9 at q ¼ 0:058 W=cm2, where the unique base
frequency was detected. The number of base frequencies
increased along with the heating power until no appar-
ent base frequencies were distinguished at 0:070 W=cm2.
The base frequency (0.006–0.1 Hz) is equivalent to that
of the liquid flowing a circle, which means that the
complexity of T3 and T9’s variation might result from the
complicated alternation between the hot and cool liquid
in the heating–cooling connections (Sano, 1991b).

Table 1

The heat flux q scopes of different flow motions

Terms q ðW=m2Þ

Stable state Periodic

oscillation

state

Chaotic

oscillation statea
With stable starting

process

With oscillatory

starting process

Tout 0.006–0.012 0.012–0.023 0.023–0.070 0.070

T6 0.006–0.023 0.023–0.087 0.087–0.695 0.695

Tin 0.006–0.012 0.012–0.052 0.052–0.064 0.064

T3 � T9 ðTout � TinÞ 0.006–0.012 0.012–0.023 0.023–0.064 0.064

a The upper range of the chaotic oscillation state is limited by the largest heating power of our experiment.

Y.Y. Jiang et al. / Int. J. Heat and Fluid Flow 23 (2002) 81–91 83



2.2.3. Chaotically oscillatory flow (see Fig. 2(3)–(4))
The oscillations of the three temperatures became

chaotic at last as the heating power increased, where the
amplitudes also increased with the heating power.
However, amplitudes always remained at constant value
when the starting process was finished. Within the lim-
itation of the present heating power, no Lorenz-like

chaos was observed. The flow did not change directions
no matter what kind of starting method was tried (other
methods such as increasing the heating power to the
specialized value step by step or decreasing it to the
specialized value from the largest, were also tried). The
flow velocity was approximated by the base frequency of
flow oscillation and energy conservation based on the

Fig. 2. Some typical experimental results at different heating powers. (a) Time series of T3, T6 and T9. (b) Time series of T3 � T9. (c) Power spectrum of

T3 � T9 at normal operating states.
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values of q and T3 � T9. Both suggested the flow was
already in turbulence regime ðRe � 2500Þ.

The only difference between the present experimental
rig and that in Creveling et al. (1975) was the tube wall,
which brought out the different results. The numerical
simulation in Section 3 demonstrates the effect of tube
wall.

3. Numerical investigation

Careful analysis of Fig. 2 shows that the relation
jTin � T6j > jTout � T6j always exists no matter whether
the flow is clockwise or counter-clockwise. The relation
suggests that heat is mainly transferred through the
entrance quarter, which violates the uniform heat flux
assumption. In fact, the wall temperature and heat flux
distributions inside are quite different from those out-
side, which can be investigated by numerical simulation.

Fig. 3 shows the coordinate system. Suppose the
bottom half (p < h < 2p) is heated with uniform heat
flux q (BC–QT) or at constant temperature Th (BC–TT).
The liquid temperature is Tb. The flow velocity w is
supposed to be anti-clockwise. Let the characteristic
length be di and the superheat be U ¼ ðT � TcÞ=ðq=hÞ for
BC–QT and be U ¼ ðT � TcÞ=ðTh � TcÞ for BC–TT,
where h is the heat transfer coefficient between liquid
and wall. The dimensionless steady state heat conduc-
tion equation of the tube wall is expressed as follows.

The dimensionless steady state heat conduction
equation of the tube wall is

o

or
Rð

�
þ r cosuÞr oU

or

�
þ 1

r
o

ou
Rð

�
þ r cosuÞ oU

ou

�

þ r
Rþ r cosu

o2U

oh2
¼ 0: ð1Þ

The boundary conditions for the bottom half are:
(i) inner surface, convection with fluid:

r ¼ ri ¼ 0:5;
oU
or

¼ hdi
kw

Uwð � UbÞ ¼ Bi Uwð � UbÞ;

(ii) outer surface, uniform heat flux:

r ¼ ro;
oU
or

¼ qdi
kwTc

¼ Bi
q
hTc

;

or constant wall temperature: r ¼ ro, U ¼ 1;
(iii) insulated at both ends:

oU
oh

����
h¼p;2p

¼ 0;

(iv) symmetry about the plane:

U ¼ 0; p :
oU
ou

����
u¼0;p

¼ 0:

The bulk fluid temperature Tb is calculated from the
energy conservation between the heat absorbed by the
liquid and that entering the control volume, so that

qfcpr
2
i wdTb ¼ 2prihðTw � TbÞ � Rð þ rÞdh; ð2Þ

where qf and c are the fluid density and heat capacity.
By integration from p to h, Eq. (2) becomes dimen-
sionless, or,

Ub ¼
h � p

qfcriw=2hðRþ riÞ þ h � p
Uw; ð3Þ

where Ub and Uw were determined by iterative calcula-
tion. According to the real experimental setup, the fol-
lowing values are assumed: do=di ¼ 1:1, R=di ¼ 16,
Bi ¼ 0:1 for copper tube and 35 for glass tube, and
qfcriw=2hðRþ riÞ ¼ 0:5.

The equation was numerically solved by finite differ-
ence method in FORTRAN. Fig. 4 shows the results. In
the tube with small heat conductivity, Fig. 4(1) shows
that the heat fluxes uniformly distribute both on outer
and inner surfaces. Both the temperatures of the wall
and the fluid increase linearly along the loop. The
boundary condition of uniform heat flux remains un-
changed. However, in the tube with large heat conduc-
tivity, Fig. 4(2) shows that the heat flux distribution is
deformed. The axial heat conduction eliminates the axial
ðhÞ temperature gradients. As a result, the heat is mainly
transported through the entrance quarter, and the wall
temperature seems axially constant. The wall axial heat
conduction is responsible for the relation of

Tin � T6
�� �� > Tout � T6

�� ��
in the present experiment. Similarly, if the bottom half
with small heat conductivity is at constant temperature,
Fig. 4(3) shows that the temperature distribution also
varies spatially. The wall temperature in the inner sur-
face changes with fluid because the axial heat conduc-
tion in the wall is faint.Fig. 3. The toroidal coordinate system.
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Fig. 4 implies that the tube wall affects intensively
the real boundary conditions and hence flow behavior.
In fact Ehrhard and Muller (1990) drew a similar
conclusion when they considered the influence of liq-
uid–wall property on flow behavior. They also sug-
gested that the wall with high heat conductivity has
advantages for stabilizing the global flow. The one-
dimensional model in the next section will show the
mechanism.

4. One-dimensional modeling of the boundary condition

effects

The spontaneous chaos appears through two ap-
proaches as soon as the loop flow is laminar. The first
one is Hopf bifurcation and catastrophe of global flow,
which leads to the Lorenz-like chaos. The second one is
intermittence bifurcation of local sub-harmonic waves,
which leads to cellular flow. In a real system both ten-

Fig. 4. Temperatures and heat fluxes in/outside tube walls: (a) arial distribution ðu ¼ 0Þ; (b) peripheral distribution ðh ¼ 3p=2Þ.
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dencies exist simultaneously and restrict each other. The
critical values of control parameter determine which
bifurcation will finally happen. The flow bifurcation in
our loop exhibited some features of the latter, which was
well formulated by Sano (1991a,b) in his three-dimen-
sional model. However, we need not build another
Sano-like model because we aim to formulate, if any, the
boundary condition influence on the Hopf bifurcation.

The one-dimensional features of the flow are ensured
by three facts. Firstly, the secondary flows decrease the
spatial temperature and velocity gradients in h cross-
sections. Secondly, the fluid Prandtl number is large
ðPr > 1Þ, which makes the momentum transported more
efficiently than the energy (Gorman et al., 1986). Thirdly,
the truncation of the fluid temperature Fourier series
expansion brings out a little discrepancy (Yorke et al.,
1987). Since Fig. 4(1) showed that the fluid is really under
BC–TT in our experiment, we examine the discrepancy
between BC–TT and BC–QT at first. After that we
generalize the model to other boundary conditions.

4.1. Boundary conditions of BC–TT

Following Gorman et al. (1986), we consider a loop
heated at constant temperature Th, over the bottom half
and cooled at constant temperature Tc, over the top half.
Consider an infinitesimal cylindrical control volume of
fluid in the loop, with volume pr2oRdh. Assuming in-
compressible plug flow, the velocity of the control vol-
ume is wðtÞ. The momentum is pr2oRdh � qwðtÞ; the total
force on the fluid element is qpr2oRdhdw

dt ; the force due to
the pressure gradient is �pr2oRdhdP

dh; the body force term
due to gravity is qgpr2oR cos hdh; and the shear force at
the wall of the tube is �sw2proRdh, where
sw ¼ 8qfw

2=Re is the shear stress in laminar flow. The
momentum equation for the fluid is therefore

qpr2oRdh
dw
dt

¼ �pr2odh
dP
dh

� qgpr2oRdh cos h

� sw2pr2oRdh: ð4Þ

Let the density of the fluid be given by q ¼
qc 1� b T � Tcð Þ½ 
, where b is the thermal expansion co-
efficient of the fluid. In the Boussinesq approximation,
substituting the expression for q into the body force
term, but letting q ¼ qc in all other terms, and inte-
grating from 0 to 2p yields,

qc

dw
dt

¼ bqcg
2p

Z 2p

0

ðT � TcÞ cos hdh � 2sw
ro

: ð5Þ

The rate of change of thermal energy in the control
volume is

qccpr
2
oRdh

oT
ot

�
þ w

R
oT
oh

�
;

which must equal the amount of heat entering the con-
trol volume. The heat entering the control volume is

�2proRdh � h T � Tcð Þ in the upper half or �2proRdh �
h Th � Tð Þ in the bottom half. The energy balance
equation can be written,

qcc
oT
ot

�
þ w

R
oT
oh

�
¼ �2hðT � TcÞ=ro; 0 < h6 p;

2hðTh � T Þ=ro; p < h6 2p;

�
ð6Þ

where the heat transfer coefficient is a function of flow
velocity, h ¼ h0f ðwÞ. The heat resistance of tube wall is
included in h to consider the effect of wall property. Eqs.
(5) and (6) can be made dimensionless as follows:

dx
ds

þ Cx ¼ pC
4D

Z 2p

0

U cos hdh; ð7Þ

dU
ds

þ 2px
oU
oh

¼ �2DUf ðxÞ; 0 < h6 p;
2Dð1� UÞf ðxÞ; p < h6 2p

�
ð8Þ

with the following transformations:

U ¼ T � Tc
Th � Tc

; x ¼ w
V
; s0 ¼ t

2pR=V

and

V ¼ gbRroh0ðTh � TcÞ
2pcl

� �0:5

; D ¼ 2pRh0
qccroV

;

C ¼ 16plR
qcr2oV

:

In order to find the ordinary differential Lorenz-like
equations, we expand U in a Fourier series, U ¼ a0ðsÞþP

anðsÞ cos nh þ
P

bnðsÞ sin nh. Multiplying the energy
equation by cos nh and sin nh, respectively can decouple
an and bn. The equations for x; a1 and b1 are indepen-
dent of those for the high order coefficients. These are:

_xx ¼ rðy � xÞ; ð9Þ

_yy ¼ �zxþ RaTx� 2yf xð Þ; ð10Þ

_zz ¼ xy � 2zð � RaTÞf xð Þ; ð11Þ
where

x ¼ 2px
D

; y ¼ p3

2D2
a1; z ¼ p3

2D2
b1 þ RaT; s ¼ Ds0

and

RaT ¼ 2p2

D2
¼ qfc

2r2o
2R2h0

� gbRroðTh � TcÞ
2pcl

;

r ¼ C=D ¼ 8lc
roh0

¼ 16Pr
Nu

:

We discuss the model comparing with that by Gor-
man et al. (1986). Note that both RaT and Raq are de-
fined at steady states, at which the energy absorbed from
the heating section equals that disposed into the cooling
section. Suppose the heat transfer coefficient is constant,
the average fluid temperature should be �TT ¼ ðTh þ TcÞ=2
at steady state, and the characteristic heat flux in the
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heating half should be q ¼ ððTh � TcÞ=2Þh0. Therefore,
RaT ¼ 2Raq, where

Raq ¼
qfc

2r2o
2R2h20

� gbRroq
2pcl

was defined by Creveling et al. (1975).
Firstly we take the heat transfer coefficient as con-

stant, that is f ðwÞ ¼ 1, in favor of dynamical analysis.
The model has three steady states, ð0; 0;RaT=2Þ andh
� RaTð � 4Þ0:5;� RaTð � 4Þ0:5;RaT � 2

i
;

which stand for the static heat conduction and steady
flow in clockwise ()) and anti-clockwise (+) directions.
The static heat conduction state gives way to convection
when RaT P 4 (saddle-node bifurcation). The flow sta-
bility can be judged by local linear analysis. The char-
acteristic equation of the coefficient matrix in Eqs. (9)–
(11) in either steady flow state is

k3 þ 4ð þ rÞk2 þ ðRaT þ 2rÞk þ 2r RaTð � 4Þ ¼ 0; ð12Þ
which possesses one negative real and two conjugate
complex solutions. The real parts of the two complex
solutions become positive (the Hopf bifurcation) when
the product of the coefficients of k2 and k is less than the
constant term, or

RaT < 2rðr þ 8Þ rð � 4Þ�1 < 0; r < 4;

> 2rðr þ 8Þ rð � 4Þ�1
> 0; r > 4:

ð13Þ

Negative Rayleigh number is meaningless. The Lo-
renz-like chaos could appear only if r > 4 and
RaT > 2rðr þ 8Þðr � 4Þ�1. In the loop under BC–QT,
the model by Gorman et al. (1986) gives critical values
for Hopf bifurcation as

Raq ¼ 0:5RaT > r rð þ 4Þ rð � 2Þ�1

and r > 2, both of which are smaller.
Under BC–TT, the driving force (buoyancy) de-

creases because the heat is mainly transported through
the entrance quarters as mentioned in Section 3. The
fact can be indirectly reflected by the different flow
variations with heating power in different loops. In Fig. 5
we compared the variation of the flow velocity in our
loop with those in some references. The figure shows
that the flow velocity increases linearly under BC–QT
while logarithmically under BC–TT. Since the driving
force is relatively smaller the critical Rayleigh number
for Hopf bifurcation is postponed to a higher value. The
conclusion was also drawn by Suda and Mimura (1989)
and Ehrhard and Muller (1990).

Welander (1967) proved that the flow oscillation re-
sults from temperature perturbation. r is just the mea-
surement of the system property for temperature
perturbation removed. In the system with small r, the
temperature perturbations will be efficiently removed by

heat diffusion in liquid (small Pr) and/or heat exchange
between liquid and wall (large Nu). The critical r for
Hopf bifurcation under BC–TT is larger than that under
BC–QT because the former wall is better at temperature
perturbation elimination. That is because the heat
transfer between the liquid and the wall with constant
temperature can effectively remove the local temperature
bulge or concavity of the fluid.

The data from the present experiment shown in Fig. 6
verified the above argument. In the whole experiment,
either Ra or r was insufficient for the Hopf bifurcation
and hence the global flow was always stable. The right
chart in Fig. 6 shows the corresponding flow velocities,
which were well predicted by the model.

In order to discuss further the effects of heat transfer
property on the Hopf bifurcation, we consider the case
that h increases with flow rate. Ehrhard and Muller
(1990) recommended the following expression:

h ¼ h0 1
�

þ K wj j1=3
�
¼ h0 1

 
þ K

ð2RaTÞ1=3
xj j1=3

!
: ð14Þ

Fig. 5. Flow velocities as functions of heating power in different loops.

(a) (b)

Fig. 6. Comparison of experiment and theory: (a) criteria for Hopf

bifurcation of global flow and (b) measured and predicted flow rates.
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The stable domain for K ¼ 0:3 is plotted in Fig. 6(a) by
numerical experiment data. The system becomes more
stable because the temperature perturbations can be
removed more efficiently at high flow rate, which agrees
with the conclusion by Ehrhard and Muller (1990) (their
Section 2.5).

4.2. General boundary conditions

We generally investigate the influence of boundary
conditions on the Hopf bifurcation. Any boundary
condition can be expressed by the axially distributed
temporal heat flux qðh; tÞ or temperature Twðh; tÞ. Al-
though they are equivalent, we adopt qðh; tÞ rather than
the wall temperature Twðh; tÞ in favor of analysis. The
torus may tilt an angle of a in the vertical plane. For the
flow at those boundary conditions, Eq. (5) still exists
while the energy equation becomes,

qcc
oT
ot

�
þ w

R
oT
oh

�
¼ qðh; tÞ=ro: ð15Þ

The Fourier expansion of qðh; tÞ seems reasonable.
However, the Fourier expression for the axial distribu-
tion of heat flux may temporally vary with fluid tem-
perature (recall, for instance, that heat is mainly
transported through the entrance quarters at BC–TT),
or qðh; t; T Þ. Under an assumption that boundary con-
ditions are axial-symmetric to the axis h ¼ a þ p

2
at static

heat conduction, qðh; t; T Þ is cast into a Fourier series of
h0 ¼ h � a � p=2, that is,

q ¼ O0
0 þ

X
1

On T ; tð Þ cos n hb � p=2ð þ aÞc

þ
X
1

En T ; tð Þ sin n hb � p=2ð þ aÞc

¼ q0 O0 T ; tð Þ½ þ O T ; tð Þ sinðh � aÞ þ E T ; tð Þ cosðh � aÞ

þ
X
2

On T ; tð Þ cos n h½ � p=2ð þ aÞ


þ
X
2

En T ; tð Þ sin n h½ � p=2ð þ aÞ
; ð16Þ

where q0 represents the average heat flux. Following the
procedure in Section 4.1, the fluid temperature is ex-
panded as a Fourier series of h � a,

U ¼ a0 þ
X

an cos nðh � aÞ þ
X

bn sin nðh � aÞ;

where U ¼ ðT � TcÞ=ðq0=h0Þ. We cast Eq. (5) and Eq.
(15) into ordinary differential equations. The equations
for the first four base modes are independent of those
for the other high modes, or

_aa0 ¼ 2O0; ð17Þ

_xx ¼ rðy cos a � z sin a � xÞ; ð18Þ

_yy ¼ �zxþ Raqxþ
p
2
RaqE; ð19Þ

_zz ¼ xy þ p
2
RaqO; ð20Þ

where w; a1; a2 were transformed into x; y; z as described
in Section 4.1, but

V ¼ gbRroq0
2pcl

� �0:5

and

Raq ¼
2p2

D2
¼ qfc

2r2o
2R2h20

� gbRroq0
2pcl

:

Eq. (17) suggests that the average heat flux only acts on
the average fluid temperature but not on the flow be-
havior. E and O only act on y and z directly. We assume
that,

p
2
RaqE ¼ CEy and

p
2
RaqO ¼ COzþ CRaRaq ð21Þ

so as to simplify the analysis. Here, CE ¼ CO ¼ �1,
CRa ¼ 0 corresponds BC–QT, CE ¼ CO ¼ �2, CRa ¼ 1
corresponds BC–TT.

Under symmetric BC–QT (a ¼ 0), Widmann et al.
(1989) observed that the Lorenz-like chaos disappears
due to the flow transition from laminar to turbulent,
which was attributed to the sudden change of friction.
However, the case of asymmetric BC–QT (a 6¼ 0) seems
different. Damerell and Schoenhals (1979) drew, using
the experimental data, a Rayleigh number scope for
Lorenz-like flow as a function of a, where the scope
narrowed with a until disappearing at a ¼ �6�. For
asymmetric BC–TT, the experiments in Ehrhard and
Muller (1990) recorded no Lorenz-like flow in the torus,
although their one-dimensional model had predicted it.
They attributed this contradiction to the increased dis-
sipative effects of the local three-dimensional flow dis-
turbances occurring with higher intensity at higher
values of the heating rate. However, the explanation
seems not adequate. The numerical results of Lavine
et al. (1986) displayed the decreased local flow reversals
at increased tilt angle, which was well reasoned in their
paper.

In fact, we also drew a similar chart for Lorenz-like
flow under BC–QT and BC–TT (see Fig. 7). As soon
as the flow is laminar (expression for friction un-
changed), the Lorenz-like chaos never disappears if
a ¼ 0, but it does if a 6¼ 0. The Hopf bifurcation is
more sensitive for tilt angle under BC–TT
ða < �1:625�Þ than under BC–QT (a < �10:75�). If the
parameter Ra is higher than the scope, the system will
undergo a procedure like the transient-chaos recorded
by Gorman et al. (1986). The orbit experiences aperi-
odically direction alternations for a while and then is
captured by the steady flow in the direction that the
torus tilted. The steady flow in the other direction
seems non-absorbing. The physical mechanism needs
further research.
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Finally we consider the general boundary condi-
tions without tilt angle. Fig. 8 shows boundary con-
dition domains of four types of flow bifurcations,
which was drawn by numerical experiments at r ¼ 5.
In regions (a) and (d) the Lorenz-like flow appears if
Ra becomes larger than a critical value. In contrast
the Lorenz-like flow exists only if Ra is less than a
critical value in regions (b) and (c). BC–QT and BC–
TT lie in region (d). The figure implies that negative
CE and CO are favorable for stable flow. Negative CE

means heat is mainly transported through the entrance
quarters, and negative CO represents heating from
bottom and cooling from above. The area above the
dissipation boundary line (CE þ CO � r > 0) is mean-
ingless in the physical sense because the system be-
comes non-dissipative.

5. Conclusions

We did an experiment on a toroidal thermosyphon
fabricated from copper tube. The natural convection

was in clear contrast to that in the usual glass torus. The
Lorenz-like chaotic flow was not observed. A one-
dimensional model was proposed to formulate the
boundary condition influence on the Hopf bifurcation.
Main conclusions were drawn as follows.
1. The axial heat conduction in the tube wall deforms

the heat flux distribution and hence affects the global
flow stability.

2. The one-dimensional model provides threshold val-
ues of control parameters for the Hopf bifurcation.
The metal tube can stabilize the natural convection
due to two reasons. Firstly, the heat is mainly trans-
ported through entrance section, which decreases the
whole driving force (buoyancy). Secondly, the better
heat transfer property eliminates temperature pertur-
bations more efficiently.

3. The torus tilt angle affects greatly the flow behavior
as well. The Hopf bifurcation can only take place at
very small tilt angle. The predictions were verified
by previous experiment (Damerell and Schoenhals,
1979).
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